Journal of Alloys and Compounds 434—435 (2007) 110-114

Journal of

AND COMPOUNDS

www.elsevier.com/locate/jallcom

Glass transition and viscosity in metallic glasses and liquids

T. Egam

-a,b,c

& Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996, USA
5 Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, USA
¢ Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

Available online 16 October 2006

Abstract

Experimental results on the structure and dynamics of metallic liquids and glasses are most frequently discussed in terms of phenomenological
theories, such as the free-volume theory and the mode-coupling theory. However, the atomistic bases for these theories have been lacking. We
propose a more fundamental, microscopic approach that may fill this gap. It is based upon the concept of fluctuating topology of atomic bonds
described in terms of the atomic-level stresses. While this approach is still under development, it already has enabled quantitative description of
some of the properties of metallic glasses, including glass transition, viscosity and glass formation.

© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Formulating a microscopic theory of glasses and liquids is
difficult, since, unlike gasses liquids and glasses are condensed
matter with strong positional and dynamic correlations. For
this reason even describing their atomic structure is already a
formidable challenge. In the absence of accepted fundamental
theories experimentalists tend to rely upon phenomenological
theories, such as the free-volume theory and the mode-coupling
theory. However, the atomistic bases of these theories are unclear
at best. Actually recent computer simulations seriously chal-
lenged the reality of the free-volume mechanism [1]. We propose
an alternative view point, based upon the topology of the net-
work formed by nearest neighbor atom connectivity. We first
establish the connection between the topology and the local
energy landscape by expressing topology in terms of the atomic-
level stresses and strains [2]. We then show that the fluctuation
in the atomic-level stresses, thus the local topology, is directly
related to temperature, and suggest that the frustration between
the continuum geometry and the discreteness of the local topol-
ogy results in freezing of fluctuation and glass transition. We
also suggest that the difference in the energetics between the
liquid state and the solid state produces a pseudogap in the topo-
logical excitation spectrum that suppresses atomic transport and
increases viscosity.
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2. Phenomenological theories

Free-volume is the most widely used concept in explaining
diffusion, structural relaxation and other mechanical properties,
even though the idea of free-volume is nearly a century old
[3,4], and the formulation by Cohen and Turnbull is already a
half-century old [5-7]. Free-volume is defined as excess space
between atoms which is necessary for atomic movements. This
concept is intuitively appealing, particularly since it is not so
difficult to measure the volume of a glass or liquid precisely
and volume correlates well with the properties of a glass. For
instance if a liquid is rapidly cooled the glass thus obtained has
a larger volume, and is less stable. Upon annealing the volume
slightly decreases as the glass relaxes. Thus volume provides a
most convenient expression of the fictive temperature of the sys-
tem. While this is often confused by many as the proof of validity
of the model, the reality of the free-volume theory has been deci-
sively challenged by computer simulations. They demonstrated
that atomic diffusion occurs by collective small atomic motions
rather than a big jump as assumed by the free-volume theory [1].

In the free-volume theory atoms can jump when a space opens
up at a neighboring site which is almost as large as an atomic
volume [5-7]. When this view was developed molecular dynam-
ics simulation has not been invented, and Cohen and Turnbull
had to be guided by the knowledge of the atomic transport pro-
cess in crystalline solids. Thus it was natural to assume that
atoms move from “site to site” through a jump by an atomic
distance. But in glasses there is no “atomic sites” specified by
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the lattice, and atoms do not have to make a jump by the “atomic
distance” in order to move. In fact this was pointed out by Argon
[8] who proposed a “distributed free-volume model”, in which
atoms move by small collective steps. Recent computer simula-
tions proved that Argon model was closer to the reality [1]. Thus
even though the free-volume theory was created as an atomistic
theory, its real value is as a very useful phenomenology.

Another phenomenology which has been quite successful in
recent years is the mode-coupling theory [9]. It is a hydrody-
namic theory extended to include non-linear effects, and has
been exceptionally successful in describing the dynamic prop-
erties of supercooled liquid. It assumes that there is a critical
temperature, called the mode-coupling temperature, 7c, below
which density fluctuations become coupled to a slow dynamics
through a feedback mechanism, resulting in increase in viscos-
ity. The dynamic correlation functions derived from the theory
agree well with experimental data, such as the dynamic structure
factor by neutron or light scattering. It also provides an intuitive
understanding of the feedback process that leads to glass tran-
sition. However, the microscopic basis for this theory is rather
opaque.

3. Local topology and atomic-level stresses

We have been developing a theory of topological fluctua-
tion, which may form the atomistic basis for these successful
phenomenological theories. The mode-coupling theory is based
upon the concept that the density functional, n(r), is the basis for
the description of the structure and dynamics of the system. The
basic philosophy of this approach is that we are interested in
viscosity, which is a low frequency, long-wave property, thus
what matters is only the fluctuations close to g=0 (g is the
wavevector or momentum) which can be described by hydro-
dynamic equations. While this is true at high temperatures, at
low temperatures the atomic structure, which needs description
by short-wave fluctuations, intervenes in the dynamics. Thus our
strategy is to start with the description of the topology of atomic
structure, and try to relate the topology to energy landscape and
thus to thermodynamics. For this purpose we describe the sys-
tem with a tensorial quantity, a local stress tensor, o(r), which
describes the local topology of the atomic connectivity, rather
than with a scalar quantity n(r).

The network of atomic connectivity, or the topology of the
atomic structure, is reasonably well defined even in metallic
liquids, since the interatomic potential has a negative curvature a
little beyond the potential minimum, which tends to separate the
second neighbor from the first neighbor and makes the definition
of the nearest neighbor metallic bond meaningful [7]. At high
temperatures these bonds are not static, but are cut and formed
at a rate similar to the vibration frequency of an atom. That is
why the atomic vibration is strongly damped. Now, in order to
describe the dynamics of such topological fluctuations we have
to relate it to the energy landscape.

The most obvious way to characterize the local atomic con-
nectivity is to consider the local coordination number of an atom,
Nc, or the number of the nearest neighbors. Interestingly the
variation in Nc has a very direct physical meaning. The best
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Fig. 1. Average coordination number, Nc, of an atom A with the radius ra,
embedded in the liquid or glass of atom B with the radius of rg. The ratio of the
radii is x=ra/rg [10].

way to picture this is to consider a void surrounded by a certain
number of atoms, Nc. It is obvious that when N is large the
void is also large. One would simply argue that Nc should scale
with the surface area of the void, by,

Nc o« r2, (1)

where ry is the radius of the void, since near neighbors would fill
the surface of the void with a similar packing fraction. Indeed it
is possible to make this scaling more quantitative. If a spherical
atom with the radius r4 is embedded in the glass of atoms with
the radius rg, the average in the local coordination number N¢
is approximately given by [10],

Ne(x) = 4 1—? (l+x)(l+x+\/x(x+2)), )

where x =ra/rg (Fig. 1). This equation was heuristically derived
and confirmed by computer simulation [10], but a more rigorous
proof is yet to be formulated. Then, if we insert an atom of
which radius is different from ra, it would result in the local
pressure. In other words for a fixed atomic size the fluctuation in
the local coordination means the fluctuation in the local atomic-
level pressure. If we define the local atomic-level pressure of an
ith atom, p(i), as the local increase in the energy due to volume
strain, then it is given by

. 1
pli) = Qi;f,;, Tij, 3)

where £2; is the local atomic volume of the ith atom, f;; the two-
body force and r;; is the separation, between the atoms i and j
[2]. The local pressure thus defined is indeed correlated with the
local coordination number, N¢c [11].

Now the local topology of the atomic bonds can be described
not only by the number of the bonds, Nc, but by the anisotropy
of the connection. For instance a hoop of atoms in the x—y plane
may be different from that in the x—z plane. The central atom
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may be bound tightly in the x—y plane, but loosely in the x—z
plane. This gives rise to the local shear stress. In general the
atomic-level stress tensor can be defined by [2],

af s 1 o B
(i) = Eizjfijrij, )

where o and B are Cartesian coordinates. Similarly the local
elastic moduli, C*f¥®, can be defined [11], and thus the local
strain,

o”%(i)

aBiy —
e = CoBr (i)’

&)

Since the stress tensor is symmetric there are just six indepen-
dent components, which include the pressure (3) and five shear
stresses. The total shear stress, t(i), is given as the sum of the
square of the five shear stress components. In average only two
elastic moduli remain; the bulk modulus, B, and the shear modu-
lus, G[11]. The G/Bratiois related to the Poisson’s ratio through,

G 2(1-2v)

B 31+v)’ ©

4. Glass transition and viscosity

In high temperature liquids local topology rapidly fluctuates
with time. The amplitude of fluctuation should depend on the
local energy landscapes for such fluctuations. It was found that
the atomic-level stresses provide a very simple description of
the temperature dependence [11,12],

(r*) _ BV
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where (.. .) is thermal and temporal or ensemble average, V the
atomic volume, gy the local volume strain and & is the local shear
strain. This means that the total potential energy per atom, 3k7/2,
isequally divided among the six stress components that represent
local topological fluctuations. Now Eq. (7) extrapolates to zero at
T =0, which means all the atomic-level stresses are zero, and all
the bonds have to be the ideal length. However, it is impossible to
achieve this in the dense random packed (DRP) structure because
of topological frustration. This means that the system will not be
able to achieve thermal equilibrium and becomes non-ergodic,
in other words freezes into a glassy structure.

Another view of this transition is to consider the frustration
between the local discrete topology and the global continuum
topology. For a monoatomic system Eq. (2) gives the ideal coor-
dination number, Nc =4m. At high temperatures local coordina-
tion is rapidly changing with time and it is possible to achieve
such a non-integral coordination in time average. However, at
low temperatures as the dynamic of fluctuation slows down,
discreteness of the local atomic bonds becomes apparent. Thus
some atoms become locally locked in certain coordination, and
resist movement. This should happen when the fluctuation in the
local coordination number, ANc, becomes of the order of unity.

From Eq. (2) we get,
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Now the local atomic-level volume strain is

3 3 3
ev=Jdv=— <f 2) dNc. ©)
Thus we expect that glass transition to occur at a corresponding
pressure level.

Yet another view is to consider the difference in the energet-
ics between the liquid state and the glassy state. The basis of Eq.
(7) is that the atomic-level stresses are totally localized, and the
stresses at neighboring sites are uncorrelated. This assumption
is no longer valid when the system freezes into a glass, since the
local stress produces a long-range stress field to contain it. This
long-range stress field can be calculated in continuum approxi-
mation with the Eshelby theory [13]. For the local pressure the
total elastic energy is given by

P, BV 1,
Ev—m’@—m(((‘?v) ), (10)
_ 3(1 —v)
T 201 -2v) (n

where ¢! is the volume strain before the environment relaxes
[11]. Thus instead of Eq. (7) we expect,
BV kT
2K, 4’

with the difference being the factor of K. As shown in Fig. 2,
the equilibrium line for a glass lies under that of the liquid. Thus
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Fig. 2. Temperature dependence of the square of the local volume fluctuation,
in the liquid state, Eq. (7), and in the solid state, Eq. (12), for BV=9¢eV and
v=0.3 representing Fe [11]. The dashed line indicates the square of the volume
strain at the glass transition.
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Fig. 3. Psedogap in the density of states, N(E), of topological excitations that
suppresses atomic transport.

for a glass to become a liquid of the same topology extra energy
has to be supplied to unrelax the long-range stress field. This
creates a pseudogap in the excitation spectrum for topological
fluctuation as schematically shown in Fig. 3. This pseudogap
suppresses atomic transport, and is the principal cause of the
increase in viscosity, leading to glass transition. Since the pseu-
dogap is proportional to K, it increases with the Poisson’s ratio,
and diverges for v=0.5. This has a direct relation to the depen-
dence of the liquid fragility on the Poisson’s ratio discovered
recently [14], as will be discussed elsewhere [15].

Now glass transition is defined to occur when the viscosity
reaches 10! poise. Thus at that temperature the system should
obey Eq. (12) rather than Eq. (7). Indeed recently we found
that the dependence of the glass transition temperature on the
Poisson’s ratio is given by
kTg crit BV T,crity2

1 =B _ZKa((SV )7, (13)
with impressive accuracy [15]. Interestingly the value of eT-crit
is equal to 0.091, so that the corresponding value of ANc from
Eq. (9)is 0.82, close to the “critical free-volume”, v*, considered
by Cohen and Turnbull [5]. This implies that the fluctuation in
the topology of atomic environment does not require real free-
volume as large as v*, but only the local dilatation of about 9%
that allows the change in the coordination by about unity.

5. Formation and deformation of metallic glasses

Eq. (2) relates the local coordination number, Nc, to local
strain. For a static structure this means that if the local strain
exceeds a certain amount corresponding to a change by unity
in the coordination the structure should become unstable. Actu-
ally for thermally activated systems the change of only 1/2 in
coordination is enough to make the system unstable by thermal
activation to the next coordination system. This argument was
the basis for the compositional limit for alloy instability, thus
glass formation, for the binary system [16]. The critical volume
strain is given by,
8crit _ 3 — 6ﬁ -9

= —Ax

w=2 = 0.0554. (14)

x=1 87

Thus when the volume expands more than 6% the structure

should become unstable. Indeed this condition appears to be
satisfied by many elements upon melting [17]. This condition

leads to an approximate expression,

. 1%
min
g =0.1—, 15
5 AV ()
where ¢ is the minimum concentration of the B element to

form a glass when alloyed into the A matrix, and AV=V, — Vp
[16].

Free-volume theory is widely used also to explain the
mechanical deformation of metallic glasses [18]. However, in
metallic glasses the Stokes-Einstein relationship holds only with
an unrealistic value of @® [1], suggesting the implausibility
of explaining the mechanical properties (viscosity) and atomic
transport (diffusion) by a single mechanism. A more realistic
approach is to consider deformation from the point of view of
atomic bond rearrangement [19]. If the structure is defined by
the topology of atomic connectivity, deformation should involve
changes in the bond arrangement. Since it is most likely that the
total number of bonds is conserved during the rearrangement,
deformation proceeds mostly by bond exchange [20]. When a
static stress is applied such bond exchange will result in the bond
orientational anisotropy (BOA), which was actually observed by
X-ray diffraction experiment [20].

6. Conclusions

In the absence of a fundamental theory of liquids and glasses
phenomenological theories, such as the free-volume theory and
the mode-coupling theory, have been widely used in explaining
the properties of glasses and liquids. However, their atomistic
basis is rather unclear. We propose a theory of local topological
fluctuations that could provide such microscopic underpinning
to the phenomenological theories. In this theory topology of
atomic connectivity is represented by the atomic-level stresses,
and evolution of their distribution with temperature determines
various thermal properties. Glass transition, structural relax-
ation, glass formation and mechanical deformation have been
well described by this theory. While the details need to be worked
out by further studies, this promises to be the first fundamental
theory, at least for metallic glasses, and possibly for other kinds
of glasses with appropriate extension.
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