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bstract

Experimental results on the structure and dynamics of metallic liquids and glasses are most frequently discussed in terms of phenomenological

heories, such as the free-volume theory and the mode-coupling theory. However, the atomistic bases for these theories have been lacking. We
ropose a more fundamental, microscopic approach that may fill this gap. It is based upon the concept of fluctuating topology of atomic bonds
escribed in terms of the atomic-level stresses. While this approach is still under development, it already has enabled quantitative description of
ome of the properties of metallic glasses, including glass transition, viscosity and glass formation.

2006 Elsevier B.V. All rights reserved.
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. Introduction

Formulating a microscopic theory of glasses and liquids is
ifficult, since, unlike gasses liquids and glasses are condensed
atter with strong positional and dynamic correlations. For

his reason even describing their atomic structure is already a
ormidable challenge. In the absence of accepted fundamental
heories experimentalists tend to rely upon phenomenological
heories, such as the free-volume theory and the mode-coupling
heory. However, the atomistic bases of these theories are unclear
t best. Actually recent computer simulations seriously chal-
enged the reality of the free-volume mechanism [1]. We propose
n alternative view point, based upon the topology of the net-
ork formed by nearest neighbor atom connectivity. We first

stablish the connection between the topology and the local
nergy landscape by expressing topology in terms of the atomic-
evel stresses and strains [2]. We then show that the fluctuation
n the atomic-level stresses, thus the local topology, is directly
elated to temperature, and suggest that the frustration between
he continuum geometry and the discreteness of the local topol-
gy results in freezing of fluctuation and glass transition. We

lso suggest that the difference in the energetics between the
iquid state and the solid state produces a pseudogap in the topo-
ogical excitation spectrum that suppresses atomic transport and
ncreases viscosity.
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. Phenomenological theories

Free-volume is the most widely used concept in explaining
iffusion, structural relaxation and other mechanical properties,
ven though the idea of free-volume is nearly a century old
3,4], and the formulation by Cohen and Turnbull is already a
alf-century old [5–7]. Free-volume is defined as excess space
etween atoms which is necessary for atomic movements. This
oncept is intuitively appealing, particularly since it is not so
ifficult to measure the volume of a glass or liquid precisely
nd volume correlates well with the properties of a glass. For
nstance if a liquid is rapidly cooled the glass thus obtained has
larger volume, and is less stable. Upon annealing the volume

lightly decreases as the glass relaxes. Thus volume provides a
ost convenient expression of the fictive temperature of the sys-

em. While this is often confused by many as the proof of validity
f the model, the reality of the free-volume theory has been deci-
ively challenged by computer simulations. They demonstrated
hat atomic diffusion occurs by collective small atomic motions
ather than a big jump as assumed by the free-volume theory [1].

In the free-volume theory atoms can jump when a space opens
p at a neighboring site which is almost as large as an atomic
olume [5–7]. When this view was developed molecular dynam-
cs simulation has not been invented, and Cohen and Turnbull

ad to be guided by the knowledge of the atomic transport pro-
ess in crystalline solids. Thus it was natural to assume that
toms move from “site to site” through a jump by an atomic
istance. But in glasses there is no “atomic sites” specified by

mailto:egami@utk.edu
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he lattice, and atoms do not have to make a jump by the “atomic
istance” in order to move. In fact this was pointed out by Argon
8] who proposed a “distributed free-volume model”, in which
toms move by small collective steps. Recent computer simula-
ions proved that Argon model was closer to the reality [1]. Thus
ven though the free-volume theory was created as an atomistic
heory, its real value is as a very useful phenomenology.

Another phenomenology which has been quite successful in
ecent years is the mode-coupling theory [9]. It is a hydrody-
amic theory extended to include non-linear effects, and has
een exceptionally successful in describing the dynamic prop-
rties of supercooled liquid. It assumes that there is a critical
emperature, called the mode-coupling temperature, TC, below
hich density fluctuations become coupled to a slow dynamics

hrough a feedback mechanism, resulting in increase in viscos-
ty. The dynamic correlation functions derived from the theory
gree well with experimental data, such as the dynamic structure
actor by neutron or light scattering. It also provides an intuitive
nderstanding of the feedback process that leads to glass tran-
ition. However, the microscopic basis for this theory is rather
paque.

. Local topology and atomic-level stresses

We have been developing a theory of topological fluctua-
ion, which may form the atomistic basis for these successful
henomenological theories. The mode-coupling theory is based
pon the concept that the density functional, n(r), is the basis for
he description of the structure and dynamics of the system. The
asic philosophy of this approach is that we are interested in
iscosity, which is a low frequency, long-wave property, thus
hat matters is only the fluctuations close to q = 0 (q is the
avevector or momentum) which can be described by hydro-
ynamic equations. While this is true at high temperatures, at
ow temperatures the atomic structure, which needs description
y short-wave fluctuations, intervenes in the dynamics. Thus our
trategy is to start with the description of the topology of atomic
tructure, and try to relate the topology to energy landscape and
hus to thermodynamics. For this purpose we describe the sys-
em with a tensorial quantity, a local stress tensor, σ(r), which
escribes the local topology of the atomic connectivity, rather
han with a scalar quantity n(r).

The network of atomic connectivity, or the topology of the
tomic structure, is reasonably well defined even in metallic
iquids, since the interatomic potential has a negative curvature a
ittle beyond the potential minimum, which tends to separate the
econd neighbor from the first neighbor and makes the definition
f the nearest neighbor metallic bond meaningful [7]. At high
emperatures these bonds are not static, but are cut and formed
t a rate similar to the vibration frequency of an atom. That is
hy the atomic vibration is strongly damped. Now, in order to
escribe the dynamics of such topological fluctuations we have
o relate it to the energy landscape.
The most obvious way to characterize the local atomic con-
ectivity is to consider the local coordination number of an atom,
C, or the number of the nearest neighbors. Interestingly the
ariation in NC has a very direct physical meaning. The best

n
o
m

ig. 1. Average coordination number, NC, of an atom A with the radius rA,
mbedded in the liquid or glass of atom B with the radius of rB. The ratio of the
adii is x = rA/rB [10].

ay to picture this is to consider a void surrounded by a certain
umber of atoms, NC. It is obvious that when NC is large the
oid is also large. One would simply argue that NC should scale
ith the surface area of the void, by,

C ∝ r2
v, (1)

here rv is the radius of the void, since near neighbors would fill
he surface of the void with a similar packing fraction. Indeed it
s possible to make this scaling more quantitative. If a spherical
tom with the radius rA is embedded in the glass of atoms with
he radius rB, the average in the local coordination number NC
s approximately given by [10],

C(x) = 4π

(
1 −

√
3

2

)
(1 + x)

(
1 + x +

√
x(x + 2)

)
, (2)

here x = rA/rB (Fig. 1). This equation was heuristically derived
nd confirmed by computer simulation [10], but a more rigorous
roof is yet to be formulated. Then, if we insert an atom of
hich radius is different from rA, it would result in the local
ressure. In other words for a fixed atomic size the fluctuation in
he local coordination means the fluctuation in the local atomic-
evel pressure. If we define the local atomic-level pressure of an
th atom, p(i), as the local increase in the energy due to volume
train, then it is given by

(i) = 1

Ωi

∑
j

f ij · rij, (3)

here Ωi is the local atomic volume of the ith atom, fij the two-
ody force and rij is the separation, between the atoms i and j
2]. The local pressure thus defined is indeed correlated with the
ocal coordination number, NC [11].
Now the local topology of the atomic bonds can be described
ot only by the number of the bonds, NC, but by the anisotropy
f the connection. For instance a hoop of atoms in the x–y plane
ay be different from that in the x–z plane. The central atom
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2Kα

〈(εT
v )2〉 =

4
, (12)

with the difference being the factor of Kα. As shown in Fig. 2,
the equilibrium line for a glass lies under that of the liquid. Thus
12 T. Egami / Journal of Alloys and

ay be bound tightly in the x–y plane, but loosely in the x–z
lane. This gives rise to the local shear stress. In general the
tomic-level stress tensor can be defined by [2],

αβ(i) = 1

Ωi

∑
j
f α

ij r
β
ij, (4)

here α and β are Cartesian coordinates. Similarly the local
lastic moduli, Cαβγδ, can be defined [11], and thus the local
train,

αβ(i) = σγδ(i)

Cαβγδ(i)
. (5)

ince the stress tensor is symmetric there are just six indepen-
ent components, which include the pressure (3) and five shear
tresses. The total shear stress, τ(i), is given as the sum of the
quare of the five shear stress components. In average only two
lastic moduli remain; the bulk modulus, B, and the shear modu-
us, G [11]. The G/B ratio is related to the Poisson’s ratio through,

G

B
= 2(1 − 2ν)

3(1 + ν)
. (6)

. Glass transition and viscosity

In high temperature liquids local topology rapidly fluctuates
ith time. The amplitude of fluctuation should depend on the

ocal energy landscapes for such fluctuations. It was found that
he atomic-level stresses provide a very simple description of
he temperature dependence [11,12],

〈p2〉
2BV

= BV

2
〈ε2

v〉 = 1

5

〈τ2〉
2GV

= GV

2
〈ε2

s 〉 = kT

4
, (7)

here 〈. . .〉 is thermal and temporal or ensemble average, V the
tomic volume, εv the local volume strain and εs is the local shear
train. This means that the total potential energy per atom, 3kT/2,
s equally divided among the six stress components that represent
ocal topological fluctuations. Now Eq. (7) extrapolates to zero at
= 0, which means all the atomic-level stresses are zero, and all

he bonds have to be the ideal length. However, it is impossible to
chieve this in the dense random packed (DRP) structure because
f topological frustration. This means that the system will not be
ble to achieve thermal equilibrium and becomes non-ergodic,
n other words freezes into a glassy structure.

Another view of this transition is to consider the frustration
etween the local discrete topology and the global continuum
opology. For a monoatomic system Eq. (2) gives the ideal coor-

ination number, NC = 4π. At high temperatures local coordina-
ion is rapidly changing with time and it is possible to achieve
uch a non-integral coordination in time average. However, at
ow temperatures as the dynamic of fluctuation slows down,
iscreteness of the local atomic bonds becomes apparent. Thus
ome atoms become locally locked in certain coordination, and
esist movement. This should happen when the fluctuation in the
ocal coordination number, �NC, becomes of the order of unity.

F
i
ν

s
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rom Eq. (2) we get,

∂NC(x)

∂x

∣∣∣∣
x=1

= 2π

3

(√
3 + 3

2

)
, dx = 1

π

(√
3 − 3

2

)
dNC.

(8)

ow the local atomic-level volume strain is

v = 3

2
dx = 3

2π

(√
3 − 3

2

)
dNC. (9)

hus we expect that glass transition to occur at a corresponding
ressure level.

Yet another view is to consider the difference in the energet-
cs between the liquid state and the glassy state. The basis of Eq.
7) is that the atomic-level stresses are totally localized, and the
tresses at neighboring sites are uncorrelated. This assumption
s no longer valid when the system freezes into a glass, since the
ocal stress produces a long-range stress field to contain it. This
ong-range stress field can be calculated in continuum approxi-

ation with the Eshelby theory [13]. For the local pressure the
otal elastic energy is given by

v = 〈p2〉
2BV

Kα = BV

2Kα

〈(εT
v )2〉, (10)

α = 3(1 − ν)

2(1 − 2ν)
, (11)

here εT
v is the volume strain before the environment relaxes

11]. Thus instead of Eq. (7) we expect,

BV kT
ig. 2. Temperature dependence of the square of the local volume fluctuation,
n the liquid state, Eq. (7), and in the solid state, Eq. (12), for BV = 9 eV and
= 0.3 representing Fe [11]. The dashed line indicates the square of the volume

train at the glass transition.
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ig. 3. Psedogap in the density of states, N(E), of topological excitations that
uppresses atomic transport.

or a glass to become a liquid of the same topology extra energy
as to be supplied to unrelax the long-range stress field. This
reates a pseudogap in the excitation spectrum for topological
uctuation as schematically shown in Fig. 3. This pseudogap
uppresses atomic transport, and is the principal cause of the
ncrease in viscosity, leading to glass transition. Since the pseu-
ogap is proportional to Kα, it increases with the Poisson’s ratio,
nd diverges for ν = 0.5. This has a direct relation to the depen-
ence of the liquid fragility on the Poisson’s ratio discovered
ecently [14], as will be discussed elsewhere [15].

Now glass transition is defined to occur when the viscosity
eaches 1013 poise. Thus at that temperature the system should
bey Eq. (12) rather than Eq. (7). Indeed recently we found
hat the dependence of the glass transition temperature on the
oisson’s ratio is given by

kTg

4
= Ecrit

v = BV

2Kα

〈(εT,crit
v )2〉, (13)

ith impressive accuracy [15]. Interestingly the value of εT,crit
v

s equal to 0.091, so that the corresponding value of �NC from
q. (9) is 0.82, close to the “critical free-volume”, v∗, considered
y Cohen and Turnbull [5]. This implies that the fluctuation in
he topology of atomic environment does not require real free-
olume as large as v∗, but only the local dilatation of about 9%
hat allows the change in the coordination by about unity.

. Formation and deformation of metallic glasses

Eq. (2) relates the local coordination number, NC, to local
train. For a static structure this means that if the local strain
xceeds a certain amount corresponding to a change by unity
n the coordination the structure should become unstable. Actu-
lly for thermally activated systems the change of only 1/2 in
oordination is enough to make the system unstable by thermal
ctivation to the next coordination system. This argument was
he basis for the compositional limit for alloy instability, thus
lass formation, for the binary system [16]. The critical volume
train is given by,

crit
v = 3

�x

∣∣∣∣ = 6
√

3 − 9 = 0.0554. (14)

2 x=1 8π

hus when the volume expands more than 6% the structure
hould become unstable. Indeed this condition appears to be
atisfied by many elements upon melting [17]. This condition
ounds 434–435 (2007) 110–114 113

eads to an approximate expression,

min
B = 0.1

V

|�V | , (15)

here cmin
B is the minimum concentration of the B element to

orm a glass when alloyed into the A matrix, and �V = VA − VB
16].

Free-volume theory is widely used also to explain the
echanical deformation of metallic glasses [18]. However, in
etallic glasses the Stokes-Einstein relationship holds only with

n unrealistic value of a2 [1], suggesting the implausibility
f explaining the mechanical properties (viscosity) and atomic
ransport (diffusion) by a single mechanism. A more realistic
pproach is to consider deformation from the point of view of
tomic bond rearrangement [19]. If the structure is defined by
he topology of atomic connectivity, deformation should involve
hanges in the bond arrangement. Since it is most likely that the
otal number of bonds is conserved during the rearrangement,
eformation proceeds mostly by bond exchange [20]. When a
tatic stress is applied such bond exchange will result in the bond
rientational anisotropy (BOA), which was actually observed by
-ray diffraction experiment [20].

. Conclusions

In the absence of a fundamental theory of liquids and glasses
henomenological theories, such as the free-volume theory and
he mode-coupling theory, have been widely used in explaining
he properties of glasses and liquids. However, their atomistic
asis is rather unclear. We propose a theory of local topological
uctuations that could provide such microscopic underpinning

o the phenomenological theories. In this theory topology of
tomic connectivity is represented by the atomic-level stresses,
nd evolution of their distribution with temperature determines
arious thermal properties. Glass transition, structural relax-
tion, glass formation and mechanical deformation have been
ell described by this theory. While the details need to be worked
ut by further studies, this promises to be the first fundamental
heory, at least for metallic glasses, and possibly for other kinds
f glasses with appropriate extension.
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